References
Baumer, Benjamin S., Kaplan. Daniel T., and Nicholas J. Horton. 2021.
Modern Data Science with r, 2nd Ed. Chapman & Hall/CRC
Press. https://mdsr-book.github.io/mdsr3e/.
Borne, Kirk. 2021. “Data Profiling–Having That First Date with
Your Data.” Medium. https://medium.com/codex/data-profiling-having-that-first-date-with-your-data-2e05de50fca7.
Box, G. E. P., and D. R. Cox. 1964. “An Analysis of
Transformations.” Journal of the Royal Statistical Society.
Series B (Methodological) 26 (2): 211–52. http://www.jstor.org/stable/2984418.
Box, G. E. P., G. M. jenkins, and G. C. Reinsel. 1976. Time Series
Analysis, Forecasting and Control. 3rd. Ed. Holden-Day.
Box, G. E. P., and M. E. Muller. 1958. “A Note on the Generation
of Normal Random Deviates.” Annals of Mathematical
Statistics 29: 610–11. doi:10.1214/aoms/1177706645.
Chang, Winston. 2018. R Graphics Cookbook: Practical Recipes for
Visualizing Data, 2nd Ed. O’Reilly Media. https://r-graphics.org/.
Gelman, A., and A. Unwin. 2013. “Infovis and Statistical Graphics:
Different Goals, Different Looks.” Journal of Computational
and Graphical Statistics 22: 2–28. https://www.tandfonline.com/doi/full/10.1080/10618600.2012.761137.
Knuth, D. E. 1984. “Literate Programming.”
The Computer Journal 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.
Matsumoto, M., and T. Nishimura. 1998. “Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator.” ACM Transactions on Modeling and Computer
Simulation 8: 3–30.
McCullagh, P., and J. A. Nelder Frs. 1989. Generalized Linear
Models, 2nd Ed. Chapman & Hall, New York.
McKinney, Wes. 2022. Python for Data Analysis: Data Wrangling with
Pandas, NumPy and Jupyter, 3rd Ed. O’Reilly Media. https://wesmckinney.com/book/.
Peng, Roger D., Sean Kross, and Brooke Anderson. 2020. Mastering
Software Development in r. https://bookdown.org/rdpeng/RProgDA/.
Schabenberger, O., and Francis J. Pierce. 2001. Contemporary
Statistical Models for the Plant and Soil Sciences. CRC Press, Boca
Raton.
Tufte, E. 1983. The Visual Display of Quantitative Information.
Graphics Press.
———. 2001. The Visual Display of Quantitative Information, 2nd
Ed. Graphics Press.
Tukey, John W. 1993. “Graphic Comparisons of Several Linked
Aspects: Alternatives and Suggested Principles.” Journal of
Computational and Graphical Statistics 2 (1): 1–33. http://www.jstor.org/stable/1390951.
VanderPlas, J. 2016. Python Data Science Handbook. O’Reilly
Media. https://jakevdp.github.io/PythonDataScienceHandbook/.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” In Proceedings of the 31st
International Conference on Neural Information Processing Systems,
6000–6010. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.
Wickham, H. 2019. Advanced r, 2nd Ed. Chapman & Hall/CRC
Press. http://adv-r.had.co.nz/.
Wickham, H., M. Cetinkaya-Rundel, and G. Grolemund. 2023. R for Data
Science: Import, Tidy, Transform, Visualize, and Model Data, 2nd
Ed. O’Reilly Media. https://r4ds.hadley.nz/.
Wilke, Claus O. 2019. Fundamentals of Data Visualization.
O’Reilly Media. https://clauswilke.com/dataviz/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2019. R Markdown:
The Definite Guide. Chapman & Hall/CRC Press. https://bookdown.org/yihui/rmarkdown/.
Xie, Yihui, Dervieux Christophe, and Emily Riederer. 2021. R
Markdown Cookbook. Chapman & Hall/CRC Press. https://bookdown.org/yihui/rmarkdown-cookbook/.
Yeo, In‐Kwon, and Richard A. Johnson. 2000. “A new family of power transformations to improve
normality or symmetry.” Biometrika 87 (4):
954–59. https://doi.org/10.1093/biomet/87.4.954.