References

Baumer, Benjamin S., Kaplan. Daniel T., and Nicholas J. Horton. 2021. Modern Data Science with r, 2nd Ed. Chapman & Hall/CRC Press. https://mdsr-book.github.io/mdsr3e/.
Borne, Kirk. 2021. “Data Profiling–Having That First Date with Your Data.” Medium. https://medium.com/codex/data-profiling-having-that-first-date-with-your-data-2e05de50fca7.
Box, G. E. P., and D. R. Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society. Series B (Methodological) 26 (2): 211–52. http://www.jstor.org/stable/2984418.
Box, G. E. P., G. M. jenkins, and G. C. Reinsel. 1976. Time Series Analysis, Forecasting and Control. 3rd. Ed. Holden-Day.
Box, G. E. P., and M. E. Muller. 1958. “A Note on the Generation of Normal Random Deviates.” Annals of Mathematical Statistics 29: 610–11. doi:10.1214/aoms/1177706645.
Chang, Winston. 2018. R Graphics Cookbook: Practical Recipes for Visualizing Data, 2nd Ed. O’Reilly Media. https://r-graphics.org/.
Gelman, A., and A. Unwin. 2013. “Infovis and Statistical Graphics: Different Goals, Different Looks.” Journal of Computational and Graphical Statistics 22: 2–28. https://www.tandfonline.com/doi/full/10.1080/10618600.2012.761137.
Knuth, D. E. 1984. Literate Programming.” The Computer Journal 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.
Matsumoto, M., and T. Nishimura. 1998. “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.” ACM Transactions on Modeling and Computer Simulation 8: 3–30.
McCullagh, P., and J. A. Nelder Frs. 1989. Generalized Linear Models, 2nd Ed. Chapman & Hall, New York.
McKinney, Wes. 2022. Python for Data Analysis: Data Wrangling with Pandas, NumPy and Jupyter, 3rd Ed. O’Reilly Media. https://wesmckinney.com/book/.
Peng, Roger D., Sean Kross, and Brooke Anderson. 2020. Mastering Software Development in r. https://bookdown.org/rdpeng/RProgDA/.
Schabenberger, O., and Francis J. Pierce. 2001. Contemporary Statistical Models for the Plant and Soil Sciences. CRC Press, Boca Raton.
Tufte, E. 1983. The Visual Display of Quantitative Information. Graphics Press.
———. 2001. The Visual Display of Quantitative Information, 2nd Ed. Graphics Press.
Tukey, John W. 1993. “Graphic Comparisons of Several Linked Aspects: Alternatives and Suggested Principles.” Journal of Computational and Graphical Statistics 2 (1): 1–33. http://www.jstor.org/stable/1390951.
VanderPlas, J. 2016. Python Data Science Handbook. O’Reilly Media. https://jakevdp.github.io/PythonDataScienceHandbook/.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” In Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000–6010. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.
Wickham, H. 2019. Advanced r, 2nd Ed. Chapman & Hall/CRC Press. http://adv-r.had.co.nz/.
Wickham, H., M. Cetinkaya-Rundel, and G. Grolemund. 2023. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2nd Ed. O’Reilly Media. https://r4ds.hadley.nz/.
Wilke, Claus O. 2019. Fundamentals of Data Visualization. O’Reilly Media. https://clauswilke.com/dataviz/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2019. R Markdown: The Definite Guide. Chapman & Hall/CRC Press. https://bookdown.org/yihui/rmarkdown/.
Xie, Yihui, Dervieux Christophe, and Emily Riederer. 2021. R Markdown Cookbook. Chapman & Hall/CRC Press. https://bookdown.org/yihui/rmarkdown-cookbook/.
Yeo, In‐Kwon, and Richard A. Johnson. 2000. A new family of power transformations to improve normality or symmetry.” Biometrika 87 (4): 954–59. https://doi.org/10.1093/biomet/87.4.954.